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ABSTRACT: Inthispape we provea fixed point theorem for a pair of mappings, the mapping involved here generalizes varioustype of
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I.INTRODUCTION AND PRELIMINARIES

Impact of fixed point theory in different branches of mathematics
and its applications is immense. The first important result on fixed
point for contractive type mapping was the much celebrated
Banach’s contraction principle by S.Banach [1] in 1992. In the
general setting of complete metric space, this theorem runs as
follows (see theorem 2.1, [4] or theorem 1.2.2, [13]). After
following theorem 1.1 to get classica result. Kannah [5] gave a
substantially new contractive mapping to prove fixed point theorem.
Since then a number of mathematicians have been working on fixed

d(fx

[ Y )dt < cf

max{d (x,y),d(x, fx),d(y, fy

point theory dealing with mappings satisfying various type of
contractive condition [6], [8-12] and [14].

In 2002 theorem 1.2 A Branciari [2] analyzed the existence of fixed
point for mapping f defined on a complete metric space(x, d)
satisfying a general contractive condition of integral type. After
theorem 1.2 we get alot of research works have been carried out on
generalizing contractive conditions of integral type for different
contractive mapping satisfying various known properties. A fine
work has been done by Rhodes [7] extending the result of theorem
by replacing the condition (1.3) by the following

) [d(x,£).d(y, )]

2 y(dt

(L)

Theorem 1.1: Let(X, d) be a complete metric space, c<(0,1) and f:X - X be amapping such that for each x, y € X

d(fx, fy)<cd(x, y)

Then f has a unique fixed point ae x, such that for each

xe X, lim x=a

n—oo

.. (12)
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Theorem 1.2: Let(X, d) be acomplete metric space ¢ (0,1) and f: X - X be a mapping such that for each x, ye X

d( fx,fy) d(x,y)
[ w(tdiscf Ty (t)d e

Where 1:[(0, +) - (0, +0)] is alesbesgue integrable mapping which is summable (i.e with finite integral ) on each compact subset of [(0,

&
+00)] non-negative and such that for each [0 >0 ’J-O W(t )dt >0 then f has a unique fixed point ac x. Suchthat xe X, lim f'x=a

n—+coo

The aim of this paper isto generalize some mixed type of contractive condition to the mapping and then a pair of mappings satisfying a
general contractive condition of integral type which includes several known contractive mapping, such as Kannan type [5], Chatterjeatype

(3]
,Zamfiresu type [14] etc.
II.MAIN RESULTS

Theorem 2.1: Let f be asalf mapping of a complete metric space (X, d) satisfying the following condition:

d( fx,fy) d(x,fx)+d(y,fy)]

.[0 w(t)dt < aIO w(t)dt
~d[(x, fy)+d(y,fx)] d(x.,y)
+ 3 ;y(t)dt+7/J’O w(t)dt

0
+5( w(t)dt

max[ d( x,fx),d(y,fx)]
0

d(x,fy)+d(y,fx)+d( x,fx)

.+77 r-01+(x,fy)d(y,fx)d(x,fx) W(t)dt

d(x,fx)+d(y,fy)+d(x,fy)

+,Ll [ 1+( x,fy)d(y,fx)d(x,fx) W(t )dt

JoO

(21)

For each X,y e X with non negative reals 06,,3,7/,5,77,ﬂ5ucmh31 200+203+y+20+3n+4u <1 where :R* - R" isalesbesgue
integrable mapping which is summable on each compact subset of R* non negative and such that

ForeachD>O,Io W(t )dt >0. ...(22)

Thenf hasaunique fixed point zeX and for each xeX, lim "x=z
L—=o0
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Proof: Let xgeX and for brevity, define x,=fx,.; for each integer n>1, from (2.1) we get

d( Xy Xne1) d( Xq, 7%,)

[ p(t)ds |

0

w(t)dt

d [( Xn-1+Xn )+d( Xn o Xn+1 )]

< aIO w(t)dt

d [( Xn—l ’Xn+1 )+d( Xn 1Xn )]

+4], (1)t
,.d( Xn—l 1Xn ) max[ d( Xn—l 1Xn+1 )1d( Xn ’Xn )]
7], p(t)dt+o( y(t)dt

d( Xn—l 'Xn+1 )+d( Xn 'Xn )+d( Xn—l !Xn )

+77 FO 1+( Xn-1Xn+1 )d( Xn +Xn )d( Xn-1%n ) W( t )dt
-

d( Xn—l 'Xn )+d( Xn 'Xn+1 )+d( Xn—l !Xn+1 )

+ 1 '0 1+d ( Xy Xpeq )A( X Xp ) ( Xp_g 2 Xp ) ;y(t )dt

d[(Xa-1 % )+ (X Xns1 )]

< ajo w(t)dt

d[( Xq-1 Xne1 )]

+'BIO w(t)dt

~d(Xn_1.%,) d( Xh-1 . Xns1)

+y p(t)dt+5[, w(t)dt

‘ 0
,.d( Xn—l ’Xn+1 )+d( Xn—l ’Xn )

+1 w(t)at

Jo
p-2[ d( Xn-1%n )+d( Xn Xn+1 )]
+u y(t)dt

JoO

A% %) d(% %y )

<(a+pryrorzpr20f M udHarpry s o
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Which implies that

dix,, Xy ) _ ) df x,_;.x, ) _
j. g{/(f)dr < (a+B+y+8+2n+2u) Jﬂ w(r)dr -

0 — |\ I—a-f-6-n-2u |

And so

Xy g Xy J

d( Xy X, 1) . d( _
[ yctdr _ | w(t)dt

]

Where

a+f+y+d+2n+2u
<1

= ...(23)
1—a—f—86—n—2u

Thus by routine calculation

d( Xy %pi] ) . d( xp.x;) _
L w(t)dt < k”j'n w('t)dt (24)

Taking limit of (2.4) asn— o we get

dix, x,.;) _
lim_[IEjJ w(t)dt -

Which from (2.2) implies that

1im d(x, x..1)=0 ..(25)
Fi

We now show that {x,} isa Cauchy sequence suppose that it is not. Then there exist €>0,and subsequences {m(p)} and {n(p)} such that
d(xn(P), Xa(P)= €,

d(xn(p), Xa(P)-1)>0......e e, (2.6)
d(*m(P)-1, Xa(p)-1)= d(*Xm(P)-1, Xm(P))+ d(Xm(P), Xa(P)-1)

< d(Xm(P)-1, Xn(P))+ € ~(2.7)
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hence

d(x m (P)- 1, %, (P)- 1)

U]
li;nj.o W(t)dt = J;) W(t)dt ..(28)

Using (2.3),( 2.6) and( 2.8) we get

d(Xm (P), Xn (P))

ﬁw@mSI w (bt

0

A% (P)-1.%, (P)-1)

<k[ w(t)dt

<k J;Dw(t)dt

Which is contradiction, since ke (0, 1), therefore {x,} is Cauchy sequence, hence convergent call the limit Z.

From (2.1) we get

d( fz,%.1 ) [d[(z,fz)+d (X, Xns1)]

J'O w(t)dt < aJ'O w(t)dt

[ d[( Z’Xn+1 )+d( Xn ,fZ)]

4], (1)t

d(z,x,) max[ d[( z,X,41 ), d( X,z
+r[, w(dt+o]

0
d(z,X,4q )+d(X,,fz)+d(z,fz)

| +77J'01+d( 21 ) (%0, 12)d(2,12) (1)t

d( Z,fZ)+d( Xn Xn+1 )+d( Z,Xn+1 )

+ﬂjol+d[(z,xn+1)d(xn,fz>d(z,fz> w(t)dt

()t

Taking limit as n - co we get

d( fz,2) d(z,fz)

[, wdts(a+pro+2n+p)f p(t)dt
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200 +2B+y+26+3n+4u<1

d(z,fz)

IO w(t)dt

Which isfrom (2.2) impliesthat (fz,2)=0 or fz=z
Next suppose that w(#2) be another fixed point of f

Then (2.1) we have

d(z,w) _ d(f z,f w)
(o = [y

d(zw) [d[(z,fz)+d(w,fw)]

IO t//(t)dtSQI

0

w(t)dt

[d[(z,fw)+d(w,fz)]

+4], (t)d

_d(z,w) [d[(z,fw),d(w,fz)]
[, wtde+s[™

. 0
d(z,fw)+d(w,fz)+d(z,fz)

+77 p-01+d( z,fw)d(w,fz)d(z,fz) (//(t )dt

w(t)dt

d(z,fz)+d(w,fw)+d(z,fw)

+IUJ'01+d( z,fw)d(w,fz)d(z,fz) W(t )dt

<(2p+y+sranru)f) wt)

d(zw)
Since 23 +y + 0 +2n + u <1 Thisimpliesthat _L W(t )dt =0 which from (2.2) implies that d(z, w)=0 or z=w and so the fixed

point is unique.

Remarks - from condition (2.1) of integral type several contractive mappings of integral type can be obtained

1. B=y=0=n=p1=0 anda (0, %) Gives Kannan mapping of integral type
2. =y = o= n=u-= 0 AndfB (O, %) at least one of the following condition hold.

3. a= ,8 —y=n=-u-= 0 Ands (O,%) gives Ramakant Bhardwaj mapping of integral type
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Theorem 2.3: let f and g be self mappings of a complete metric space (X,d) satisfying the following condition.

d( fx.gy) dl(x,fx)+d(y,gy )]
J,  wtdtsaf T ()t

d[(x,gy)+d(y, )]

4], (t)et

max d[(x,gy).d(y, )]

~A(XY)
w7f,  wt)d+s], w(t)t

d(x,gy)+d(y,fx)+d(x,fx)
+77 ';)1+d(x,gy)d( y, Xx)d(x,fx) W(t )dt
d(x,fx)+d(y,gy)+d(x,gy)

pufretOeanaty.badtebdy ()t

-

..(2.9)

For each x, y eX with non negativereals &, 3,7,0,17, 14 suchthat 2 + 28 +y + 26 +3n + 41 < 1 where y:R* - R" islesbesgue
integrable mapping which is summable(i.e. with finite integral) on each compact subset of R™ ,non negative and such that for each

[]
o [ WOt >0

Then f and g have a unigue common fixed point zOOX

.(2.10)

Proof: - let x,eX and for brevity define Xon. 1 = fXon @Nd Xon+ 2=gX%ons+ 1. FOr €ach integer n=0 , from (2.9) We get

Ad(Xone1 Xonez ) d(f %0 :9% 041 )
I p(t)at SL w(t)dt

0
y(t)dt
[ A% Xonen )HA(Xppney Xonig )]
+p[ ()t

400 ) MEX(A( X Xz ) I Xy s )
+7/I w(t)dt +5I w(t)dt

0 0

[ d [( X2n 1X2n+1 )+d( X2n+1 1X2n+2 )]
< aI
0

d(%on Xon2 )0 Xone Xona )HA(Xon Xone )

+77‘I;)1+d( X2n 1X2n+2 )d( X2n+1 ’X2n+l )d( X2n 1X2n+1 ) l//(t )dt

d( x2n ’X2n+l )+d( X2n+l lx2n+2 )+d( X2n ’X2n+2 )
+1Llj.1+d( X2n ’X2n+2 )d( X2n+1 ’X2n+1 )d( XZn ’X2n+1 ) W(t )dt
0
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d(X2n1X2n+1)
<(atpry+o+2n+2u)f y(t)dt
d(X2n+1 !X2n+2)
Ha+f+o+n+2u)f w(t)dt
Which implies that
d(X2n+l’X2n+2) CZ + + + 5 + 2 + 2 d( X2n1X2n+1)
[ st < &Py T “)I w(t)dt
0 l-a-f-0-n—-2u JI°
And so
d( Xope1 Xoren ) d(Xop Xon+1)
[; 1 y(Ddt<kf, Vi (t)dt
(a+B+y+o+2n+2u)
Where k= l—a—ﬂ—é—n—Zy <1 ..(2.11)
Similarly

d( Xon Xon+1)

d(Xon-1%on )
.[0 w(t)dt < kJ'O w(t)dt

Thisisgenera, for al n=1, 2.....

..(2.12)

d( X Xne1) d( Xq-1:%,)

[, p(t)dt<kf w(t)dt

Thus by routine calculation, we have

..(2.13)

d(% % )

Iod‘x“ = (t)dt < KT [ w(oa

0

Taking limit asn - oo, we get

d(% Xne1 )

iy w(t)dt

23
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Which from (2.10)

|irfT1C|(Xn,Xn+l):0 ..(2.14)

We now show that {x.} is a Cauchy sequence, suppose that it is not.
Then there exist e>0 and subsequences
{m(p)} and {n(p)} such that d(x(p), X(P))= L,
d (Xn(P), Xa(p)-1)>0 ...(2.15)
dxm(P)-1, Xa(P)-1)< d(Xm(P)-L, Xm(P)+ dX(P), Xa(P)-1)
< d(Xm(P)-1, Xn(P))+ € ..(2.16)
Now
d0%m(P) Xen(P))=A(X2m(P) Xan(P)-2)+ d(Xen(P)-2,Xen(P)-1)+ A(Xan(P)-1%en(P))

<et+ d(Xan (P)-2, X2n(P)-1) + d(Xan (P)-1, Xn(P)) -.(2.17)

hence

. d( X2m(p)’x2n(p))
lim I
n JO

Then by (2.13) we get

w(t)dt < I:t//(t it

d( Xam (P). X2 (P)) d( Xam(P)=1.X25 (P)-1

f; p(t)dt< k[ "w(t)dt

d( X2m (P)=1.%m(P)) d( Xom(P), X2 (P)) M
E{O p(t)dt+ | w(t)dts

0
(1 d( %0 (P)-1,%20 (P) ]

=) () |

Taking limitasp - o we get

I:w(t )dt < k J’Omw(t )it

Which is contradiction, since ke (0,1). Therefore {x,} is Cauchy, hence convergent, call the limit Z.

<k

24
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From (2.9) we get

d(fz,9%, .1 )

d(fz,x, .5 )
p(t)dt< |, w(t)dt

J;
[ d[(zf2)+d (X511 X5 042 )]
S a 2n+172n+2 W(t)dt

0

[ d [(Z’X2n+2 )+d( X2n+l !

4, o (t)dt

~d( max[d( z,X, 1.5 ),0( X, 041, f2)]

trfe T w(der S w(t)dt

0
d(Z.Xan+2 )+d(Xpns1,f2)+d(2,17)

+77 Fol"'d( Z’X2n+2 )d( X2n+1’fz)d( Z,fZ) W(t )dt

d( z,fz)+d( Xan+1 X2n+2 )*+d( Z:Xon+2 )

+/j ~ 1+d(Z,X2n+2 )d(X2n+1’fz)d(Z’fZ) W(t )dt
&

0

Taking limit as n - co we get

[ ydis(a+proron+p)f wOd
as
(20+20+y+20+3n+4u)<1

d(z 2
[, vat=0

Which from (2.10) impliesthat d (fz, Z) =0 or fz=z.
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Similarly it can be shown that gz=z. so f and g have a common fixed point zeX . we now so that z is the unique fixed point of f and g. If not
then let w(#2) be another fixed point of f and g then from (2.9) we have

d(zw)

d < d( fz,gw) d
J, w(tdts (t)dt

[d[(z,fz)+d(w,gw)]

Iod“’w’y/(t dt<af w(t)dt

[d[(z,gw)+d(w,fz)]

+f, w(t)dt

ax[ d[(z,gw).d(w,fz)]

_d(zw) m
[ vt s, w(t)dt

d(z,gw)+d(w,fz)+d(z,fz)

+77 :)1+d(z,gw)d(W,fZ)d(Z7fZ) W(t )dt

d(z,fz)+d(w,gw)+d(z,gw)

"‘,U :)1+d(z,gw)d(W,fZ)d(Zle) (//(t )dt

<(28+y+s+2prm)f "yt

d(z

W)
y (t)dt o

Which from (2.10) implies that d (z, w) =0 or z=w and so the fixed point is unique.

Since 2 +y + 0 +2n + p <1. thisimpliesthat J-O
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